The inverse Riesz probability distribution on symmetric matrices
نویسندگان
چکیده
منابع مشابه
Beta-hypergeometric probability distribution on symmetric matrices
Some remarkable properties of the beta distribution are based on relations involving independence between beta random variables such that a parameter of one among them is the sum of the parameters of an other (see (1.1) et (1.2) below). Asci, Letac and Piccioni [1] have used the real beta-hypergeometric distribution on IR to give a general version of these properties without the condition on th...
متن کاملInexact Inverse Iteration for Symmetric Matrices
In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av = λv. Our analysis is designed to apply to the case when A is large and sparse and where iterative methods are used to solve the shifted linear systems (A − σI)y = x which arise. We rst present a general convergence theory that is independent of the nature of the inexact solver used. Next we consider...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملThe inverse eigenvalue problem for symmetric anti-bidiagonal matrices
X iv :m at h/ 05 05 09 5v 1 [ m at h. R A ] 5 M ay 2 00 5 The inverse eigenvalue problem for symmetric anti-bidiagonal matrices Olga Holtz Department of Mathematics University of California Berkeley, California 94720 USA March 6, 2008
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2012
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2012.05.013